
a Fermi National Accelerator Laboratory 

FERMILAB-PUB-86/123-T 

August, 1986 

Light Front QCD in the Vacuum Background 

ST. GEAZEK 

Fermi National Accelerator Laboratory, 

P.O. Box 500, Batavia, Illinois 60510 

ABSTRACT 

It is shown that the canonical light front formulation of quantum chromody- 

namics is able to incorporate ideas used by Shifman, Vainshtein and Zakharov to 

successfully describe many features of the hadronic spectrum in their sum rules. 

It is pointed out that the new light front Hamiltonian may lead to a quantitative 

model for the structure of hadrons. 
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I. Introduction 

This paper is concerned with the construction of a dynamical formalism for 

hadrons which combines some of the best features of light front quantization and 

sum rules in QCD. 

The light front formulation of QCD provides a method to describe the struc- 

ture and interaction of hadrons in a conceptual framework based upon the Fock 

state decomposition of hadronic states which arises naturally in the light front 

quantization(‘]. It is particularly useful in describing phenomena dominated by 

short distances, like e.g. large momentum transfer exclusive processes, where only 

a few leading Fock components are involved. However, to accomplish a complete 

description of hadrons one would have to include an infinite number of the Fock 

components in the eigenvalue problem of the light front Hamiltonian. Moreover, the 

light front formalism has so far ignored subtleties due to the large scale structure 

of non-abelian gauge fields, chiral symmetry breaking, and the like. Although these 

do not affect hard processes, they have a profound effect on the structure of the 

vacuum which in itself may be the very origin of the observed hadronic spectrum. 

On the other hand, the sum rules provide a way to describe the spectrum of 

hadronsl’l. This is done by introducing quark and gluon condensates in diagram- 

matic QCD calculation of the vacuum polarizations induced by the appropriate 

currents. Such vacuum polarizations are related to the spectrum of hadrons via 

dispersion relations. The vacuum condensates are supposed to exist due to non- 

perturbative effects of QCD. They introduce a new scale and provide the so-called 

power terms. The basic idea behind the QCD sum rules is that it is the power terms 

(not higher orders in the strong coupling series) that limit asymptotic freedom and 

explain the hadronic spectrum. The sum rules differ greatly from many QCD like 

theories like potential and bag models which often introduce parameters that are 

not related to the QCD Lagrangian. 

The natural question arises if it is not possible to include the power terms in the 

light front approach to QCD. We show that the answer is positive. The resulting 

dynamical formalism may lead to a quantitative model of hadrons. 

In Section II we derive the light front Hamiltonian of QCD including the power 

terms. They are represented by background quark and gluon fields originating from 
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the vacuum. The quantization and the gauge covariant expansion of the background 

fields are included. 

Section III is devoted to a test calculation of the vacuum polarization according 

to rules following from the new Hamiltonian. We reproduce known results for 

coefficients of the quark and gluon condensates in the z+- ordered fashion, by 

simple means of the definite intermediate Fock states of quarks in the vacuum 

background. 

In Section IV we draw conclusions and comment on prospects of further appli- 

cations of the Hamiltonian to the bound states of quarks and gluons. Taking into 

account the success of the light front approach in describing high energy structure 

of hadrons and the surprisingly good results of sum rules for low energy hadronic 

properties we sketch a scenario of how the present possibility to combine both suc- 

cesses in one dynamical scheme would accomplish description of hadrons based on 

the QCD Lagrangian and properties of the vacuum. 

The purpose of this note is to summarize some formulas and ideas which appear 

to us more self consistent than we have expected before we started the preliminary 

calculations presented below. 

II. The Hamiltonian 

The main idea is illustrated by the set of substitutions 

IO> --t In> 

rl, -+ $+w 

A + A+a 

(2.1) 

to be done in the standard light front formulation of QCDl’l. / 0 > and / fl > are 

the perturbative and true vacuums, respectively. The quark field rl, and the gluon 

field A are split into the standard fields G and A and into the necessary additional 

parts w and a. The standard fields $ and A act in the same way on the true vacuum 

1 fl > as they do on the perburbative vacuum / 0 >. The parts w and a detect the 

nontrivial structure of the physical vacuum 1 fl >. 
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A. The Light Front Splitting 

The splitting of quark and gluon fields mentioned above occurs naturally on the light 

front. This unique property of the light front formulation can be seen in an example 

of the expansion into creators and anilinators of any field 4 at z+ = z” + z3 = 0 

$5 (x’ = 0, z- = z” - z3, z’) = irn dk+ / d2kL [a,/= + b:e”“] . (2.2) 

The momentum kf = k” + k3 is positive definite. Therefore, the integral starts at 

the point k+ = 0. However, this is a singular point of the theory. One should write 

the field I$ as follows 

fp (z’ = o,z-,z ‘) = lrn dk+ / d’k’ [aLe-“’ + b;e’“‘] + 

+ /,” dk+ [?I , 

where the parameter 6 is an arbitrary small positive lower limit. The question-mark 

exhibits the lack of knowledge about the nature of the singularity at k+ = 0. The 

last equation is already the natural splitting occuring in the light front approach to 

QCD 
4 = 4s + 9s. (2.4) 

The important point of the light front splitting is that the part 4s generates standard 

looking perturbation theory even if we develop calculations in the true vacuum 

1 D >. Only the part (06 reports on the difference between j fl > and / 0 >. It 

follows from the fact that the generator P+ of translations in the z- direction along 

the front is positive definite, free from interactions and by definition must anihilate 

the physical vacuum j fl >. If 1 n > would contain any quantum with k+ > 6 

created by u: or 2~: then the P+ expectation value in j n > would be larger than 6. 

Therefore any normal ordered product of 46’s has zero expectation value in 1 fl >. 

However, we can not exclude that the proper limiting procedure yields nonzero 

expectation values of products of the parts pps in the true vacuum 1 R >. Whenever 

we find an expectation value of a product like < e 1 (PJ(P~ 1 fl > we replace it by 

a proper tensor times a number called the condensate. That this might lead to a 

reasonable approximation in QCD is a nontrivial surprisel*l. 

There is no such spectacular splitting in the formulations other than the front 
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form because there are no positive definite momenta in them and so some even 

very large opposite momenta may contribute to the vacuum expectation values of 

normal ordered products of fields. 

B. Details of Hamiltonian 

The QCD Lagrangian is 

Lt = -+ F; F,,” + & (i 44 - m) +Lt 

where we split fields $+ and At into parts 

*t = *+w 

At = A+a 

(2.5) 

(2.6) 

according to the previous Section II. A. Our notation will be explained more ex- 

plicitly during further calculations. The background fields w and a are constrained 

by their own equations of motion (TrTY’” = ,bnb) 

d'fpv = g~‘r”T%l~ T’ 

(P-m)w = 0 

(2.7) 

This turns out to be the necessary condition to avoid the problem of inverting the 

operator k + = i@ = i2& on the background fields themselves in the construc- 

tion of the Hamiltonian. On the other hand it means that the background fields 

are saddle points of the action. Including their vacuum expectation values would 

correspond to averaging over the saddle points. Thus the nontrivial structure of the 

saddle points would be shrunk into the singular vacuum state 1 n > on the light 

front. We include the fields w and a to extract from the singular I R > its influence 

on the quantum excitations described by the fields li, and A. 

The equations of motion for the fields cl and A result from subtracting the 

background equations of motion (2.7) from the full equations of motion for the 

fields tic and At. They are 

a,F” + 8,K” = ig [A,,, F’“] f L” + 
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+ g$y’T’+ . T” + M’ (2.8) 

(ii+--m)(I = g++i++c 

where 

K’” = ig [A”,a”] + ig [a“, A”] 

L’ = -ig [A,, f’” + P”] - ig [a,, F”” + K’“] 

M’ = g&“T’w . T” + gojr’T”+. T” 

t = sCw+gPG 

(2.9) 

and we use notation defined in the Appendix. 

The independent dynamical fields are $+ = A+$ and A’,i = 1,2, while we use 

the gauge A+ = a+ = 0 and A+ = $7”7* together with 7’ = 7 f -$. We use 

conventions of Bjorken and Drell. The canonical energy-momentum tensor renders 

the Hamiltonian 

H, = ; i dz-d’z’T;- = h •t H (2.10) 

where h denotes the background energy and H is 

H= 
I 

dz-d’z’ { Tr ( - F+” . a-A, - F+- . Era, - j+~ . a-A, + ;FUQ~Q~ + 

+ F@” ja, + FuaKBo + fSnKgc, + +-Kpa ) + (2.11) 

+ &a-$+ + &a-w+ + wfia-$+ >. 

The procedure of expressing H by independent degrees of freedom is done essentially 

the same way as in Reference[‘,*l. The only complication stems from the additional 

terms in the equations of motion. So we only stress the role played by the gauge 

condition A+ = a+ = 0 and by the subtraction of pure background terms, which 

allow inversion of i@ by means of & in the Fourier representation because k+ is 

never smaller than 6. This way we eliminate seagull terms in which (;a+)-’ would 

act on background fields alone. To justify integrations by parts we have to impose 

vanishing boundary conditions on the independent fields $J+ and A’ at spatial light 
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front infinity. The result for H is 

H = 
/ 

dz-d2zLM 

where 

(2.12) 

M = ~~o~c7rL+ + w:u&orl+ + (e-&4+)t~+ + 

+ g(?$ + a)($+ S)(G + WI - 90 b + 

+ g2 [ (4 + a)+i&j(& + w) + z i& s4-i 
ii- + *c& Pst + ; P&+i4 + “a& f&j+; P&& 1 t 

+ g’TrQ&Q+ (2.13) 

+ T&;lj . a;Y + Trai;lj. ai,j + Traiaj . #JQ + 

+ 29 Tr iay2 + 2) . [ia + a,, & + aa] - 2g Tr ia”a8 [a,, aa] + 

- ;Tr [;ie + 8, ;I@ + a@] [ii- + a,, & + as] + $Tr [aa, aa] [am, a~] 

and 

Q” = (4 + a)y+T”(5, + w) - w+/+T’~ + (2.14) 

1.4 - [;a+(? + an),& + G]’ + [ia+a”,a,ln _ 

The notation is 
- - 

*=ti+++- CL- =$$u$+ U = iaid + pm 
;li = A’ ;k- = &’ 8.4’ A+=0 . 

(2.15) 

C. The Quantication 

We expand fields at z+ =~O ,as follows 

,&) = /,+>, d;6;+@k;’ 5 { b;, . ukA . u, . e-ikr-+ + d;l, . vlr~ . vi . eiLz-‘lz’} 
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Nz) = , 

(2.16) 

where the boundary regulator E 1 z I= ~(1 z- 1 + 1 z1 1 + 1 z2 1) is omitted in further 

calculations. Imposing commutation relations (c = (k+, k’)) 

{bjA&} = {d,-,,d;p} 
= {aj,,&} 
= 16n3k+63(k’ - 3 . 6xx, 

{b,b} = {d,d} = . . . =0 

implies in the limit 6, E -+ 0 (5 = (z-, 2’)) 

{tL+(23,tcl!(y’,}~+=y+=o = A+63(z- Cl 
[A’(z), a+Ai(y3] r+=y+=O = iJij63(z - Cl 

The spinors uk~ and VIA are defined asI31 

ut~ = S(k,m)[Pl 

vtx = Sk m) liYlc 

(2.17) 

(2.18) 

(2.19) 

where 

S(k,m) = [mb- + (kf + a’k’)A+] (2.20) 

is the spinor 4 x 4 matrix representation of the boost from the rest frame of a 

particle of mass m to the frame, where it has momentum k. This is an example of 

boosts which exactly solve the problem of boosting bound states in the light front 

form of dynamics. X,J is a two component spinor denoting the spin projection along 

the z-axis and C denotes charge conjugation. Otherwise we follow conventions of 

Referencei’.*]. 

Inserting the expansions (2.16) into our Hamiltonian one obtains the desired 

expression for Ht. It contains the same terms as given in Reference[‘.*l, which lead 
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to the light front perturbation theory as described there, and many additional terms 

involving the background fields, which require separate treatment. 

D. The Vacuum Background 

The net influence of the vacuum background on quarks and gluons must be Poincare 

and gauge invariant. In sum rules it is achieved by using the Fock-Schwinger gauge 

(zlr - it,) a’(z) = 0. (2.21) 

It allows a useful expansion of the background fields in polynomials of the distance 

z,, - ?‘rr between the conveniently chosen orign !? and the actual point of interest. If 

the background fields are not rapidly varying on the scale of hadronic size it should 

be sufficient for a reasonably good description of hadrons to include a few terms 

in the polynomial. Indeed, already the lowest terms in the polynomials lead to 

quark and gluon condensates which correlate rezonance properties 1’4 and baryon 

masses12~bl. The Poincare and gauge invariant results are relatively easy obtained 

thanks to three facts. The first one is that the choice of the point 5 is equivalent to 

the choice of gauge and does not contribute to physical quantities. The translation 

invariance broken by the choice of Z is restored by gauge invariance. The second 

fact is that the polynomial coefficients are gauge covariant quantities, what almost 

automatically leads to the desired gauge invariant expressions. The third fact is 

that the Fock-Schwinger gauge is Lorentz invariant. Altogether the correct choice 

of gauge provides the convenient method of calculation. On the other hand the 

light front Hamiltonian approach is based on the choice of gauge A+ = a+ = 0. 

This seems to ruin the possibility to construct a practical dynamical formalism out 

of two such different methods. Fortunately, the light front gauge is effectively not 

worse than the Fock-Schwinger gauge, as shown in the Appendix. The appropriate 

expansion in powers of zs around z = 0 starts with 

a@ = ;zp [fop” + 6’. f,” + tjp. j;q + O(2) (2.22) 

w = wo+ z,*d%o +0(2) , 
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where 6 is the four-vector described in the Appendix. The Fourier space counter- 

parts are 

a’(z) = / d’k ; [fop’ + vp + We’] 
{ 

[&P(k)] + . ..} e”’ (2.23) 

W(Z) = / d’k wo [6’(k)] +dPuo 1 [&c?(k)] + . ..) eikr 

and we introduce them into the Hamiltonian. If we put z+ = 0 in the above expan- 

sions, then the integral over k- can be done immediately and the z+ dependence 

(‘time’ dependence) of the background fields is lost. It is properly reconstructed in 

further calculations in Section III on the basis of the following observation. 

Let us write the background fields in the form 

a’(z) = / d’k. a”(k) : eiLr (2.24) 

w(z) = 
/ 

d’k . w(k). e’“= 

and observe that we can write their z+ dependence like 

,y(z) zz ,++ . aqz+ = 0,~). e _ ++ 

W(Z) = ++ . w(z+ = o,q . e-2=+ 

if the formal conditions 

[h,a’(k)] = k- . a’(k) 

[h,w(k)] = k- .w(k) 

(2.25) 

(2.26) 

hold, where h is the part of the Hamiltonian which counts the background fields. 

Thus we may consider 

H* = H*(z f=o)=H+h (2.27) 

as the conserved Hamiltonian and have to include h in a construction of the evolution 

operator. 

If we could introduce 8, a gap value of k+ almost equal to the parameter 6, and 

if we limit the background fields not by 6 but by the many times smaller difference 
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6 - 6’, then the Hamiltonian H would not be able to create particles from the 

vacuum1 fI > . Then the eigenvalue equation Ht 1 fI >= 0 implies h 1 fl >= 0. 

However, we can not consistently require both that h 1 fl >= 0 and that the 

Hamiltonian h counts energies of the background fields. The only possibility is 

to define the Hamiltonian by subtracting its vacuum eigenvalue Xs, which is even 

expected to be infinite lrl. Finally we obtain 

Ht=H+h--Xo (2.28) 

where H is given by equations (2.12)-(2.15) with all fields taken at I+ = 0 according 

to the expansions (2.16) and (2.24), h is the background Hamiltonian satisfying the 

commutation relations (2.26) and Xs is the number which shifts the vacuum energy 

to zero. The Hamiltonian h - Xs must be commuted through all background fields 

involved in calculations to reconstruct their z+ dependence. 

III. The Vacuum Polarization 

The vacuum polarization tensor we are considering is 

II““(q) = i / d’z eia’ < n I T+ LvWYF41 I n > 

where the quark current Jr is defined as 

(3.1) 

J;(z) = : $t(z+r~)~~~*(Z+r~) : 

= p+ : ijqZ+ = o,q7qbt(z+ = o,q : e-iH*+ (3.2) 

= ef(R+-I=+ [: qJ(qp~(z) : +f$(+y”w(z)+ 

+3(z))7*$(q + (s(47’ w(z)]z+=o. e-f(H+h-Ao)z+ 

and the last normal ordering is understood as putting creators to the left of anili- 

nators.The z+ ordering operator acts as follows 

T+ [J(z+) . J(O)] = 8(z+). J(z+) . J(0) + 0(-z+) . J(0) . J(z+) (3.3) 

We want to check if the light front Hamiltonian calculation of lip”(q) agrees with 

the results of Reference[r.“]. First we illustrate some basically simple light front 

techniques to shorten the later discussion of more complicated calculations. 
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A. Basic Calcuational Toole 

After observing that for q+ > 6 only the first z+ ordering survives we act with the 

left-most exponential factor to the left vacuum bra and integrate over z+ to obtain 

nPv(q) = _ / dz-d2z~e;q+“--‘QL”L . 
(3.4) 

. -C n I [: ~,(Z~-I~~~(Z) :] lz+=o [q- - (H + h - A,)+ ~1~~ [: $,(o)y~h(o) :] 1 n > 

Consequently, the Hamiltonian must be commuted here to the left vacuum bra to 

reconstruct the z+ dependence of the background quark field. 

It is convenient to extract the vacuum polarization II from the tensor 

W(q) = (q’q” - 4$7’1”) . rr(q2) (3.5) 

by considering the component IT++(q) = q+q+lI(q2). The terms which are inde- 

pendent of w and of the interaction part HI in the Hamiltonian H = H,, + HI 

are 

q+ = - 
/ 

dz-d2zlefq+r--‘q~“~ . 
(3.6) 

. < n 1 [: $(z)7+$(23 :] lz+=o . [q- - Ho]-l . [: W~)r+tiL(o) :] 1 n ’ . 

We insert the expansion (2.16) for G(Z) Ir+=s, use the property of the light front 
splitting that bk 1 fl >= ds 1 n >= 0 for k+ > 6, execute the commutation relations 

(2.17) and obtain 

q+ = -3 
q+-6 &+ 

~ 
16x3 

kL2 + VI’ _ (q’ - kl)’ + rn2 -I. 
k+ q+ - kf I 

(3 7) 

The generic substitution 

k+ 
2=--, 

q+ 
kL=z.ql+[’ 

results here in the integral (6 = 6/q+) 

II:+ = q+q+& /:+dz/dZIL [1:;1+;; -q2]-‘. 

(3.8) 

(3.9) 
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Using rotational symmetry around 3’d axis and changing to the polar coordinates 

in the transverse plane of I1 we can substitute IA2 = ~(1 - z)z which gives 

nl(q2) = $ Jl-* dz z(l- zi-dz [*+ zclm:z, - q2]-l (3.10) 
L 

Another often used substitution is z = i(l + u) leading here to 

3 l-q+ zr - 
167rr I 

_‘,r”lK, du(1 - u2) km ds [s + s] -r 

where a = 1 + $ and QZ = -q’. For a = 1 we would obtain neglecting n 

~I(Q’,P’) = &(n:(Q’) - H:(P~)) 

1 1 
--- 
z - q2 z + p2 1 

(3.11) 

(3.12) 

= -l& 
4x2 fi2 

which illustrates the subtraction procedure at q2 = -pr and agrees with the equa- 

tion (3.3) of the Reference(2.al. If the quark mass is to be taken into account we 

can calculate the imaginary part of lll(q2) recalling ic from the equation (3.4). 

Neglecting tc we get 

ImIIl(s) = -$ /ol dz ~(1 - z) /ok d(z + .(;“1 =I - 6) 

= ;l’dzz(l-z)O(- 
.(lc z) +s) (3.13) 

where a = 1 - %. This agrees with the eq. (4.2) of the Reference12.“] where lT,(q2) 

is calculated from lmIIr(s) via dispersion relation. 

All the above agreement reflects the equivalence of the light front formulation 

of perturbation theory and the Feynman rules. The interesting fact is that we have 

only one z+ ordered diagram from Fig. 1, while in other time ordered formulations 

(instant forms) we would have two time ordered diagrams, equivalent to the one 

Feynman loop diagram. 
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-- 
X+ ! 

i k, 

----- 
q Y 

cl 

-+---- Y 

[q--k,,-(q-k),,]-' 

Pi I: CY- ada paturhti.e put d the N~uu, poluirrti. The .sGcd 
line dalota thr .tLti cf. quuk and ma mtiipwk in the N‘J”rn , n >. 
The mbvript ‘on’ r+.mhd, @a th.t t; = (P + m’)/k’. 

B. The Quark Condensate 

To check the coefficient of the matrix element < I7 / C.&J / n > in n(q2) we restrict 

ourselves to the zero order term in the coupling constant. Then the relevant terms 

are 

I-If’ <WV> = - / 
d5-d2Zlef*+z--iqLsL (3.14) 

. < n ( [~(47+4(4 i- $(237+44 lz+zo [q- - (Ho + h - XO)]-~- 

. [0(0)7++(o) + ~(0)7+43)] 1 n > 
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Inserting the expansions from equations (2.16) and (2.24) we see that only two 

terms 

< l-l I [G)7++&)] I.+=0 [q- - ( Ho + h - X0)1-l $(-,(0)7+w(O) / I-I > + 

+ < * / [‘&-,(qr+‘@] Ir+=o [q- - (Ho + h - X0)3-1 ~(o)~+t&+~(~) / n > 

(3.15) 

are contributing. Commuting the denominator to the left, executing all commuta- 

tion relations, using the light front splitting properties and after summing indices 

and integrating over momenta we obtain the expression 

illustrated by diagrams from Fig. 2. 

:Lj$ ql+ _ 9 Yf r+ 9 

[q-=k--(q-k),]-’ 

Fii1: w-tic repraen~tion dthe qaui mndeM.te wescient to the 
brat a&¶ d pertlvhtion theory. 

Noting that 



-16 FERMILAB-Pub-86/123-T 

(3.17) 

we see that only the terms with covariant derivatives give non-zero results.Thus we 

arrive at 

II++ 
a (q + kl+ 

<ilY> = -4iakp (q + k)z - rnz 
IL=0 . <n 1 ao7+d+ho 1 n > (3.18) 

and using the fact that 

< n IL&. dQ, j n >= &6*b(7-),,m < n 1 aowo 1 n > (3.19) 

we finally obtain 

a n++ -- q+ 
<irw> = ak- (q + k)2 - m* 

Irtzo. 2mI< n I wdo 1 n > (3.20) 

or 

I-I <ow, = 2". <n 1 oowo In > 
Q’ 

in complete agreement with Referencelz.bl. 

(3.21) 

C. The Gluon Condensate 

For massive quarks and in leading order of perturbation theory the gluon condensate 

coefficient follows from 

l-I++ <ff> = - I 
~z-&&e;‘+z--‘q~z~ . (3.22) 

. -C n I [: 4(~)7+$(z) :] I.+=,, [q- - (~+h - A~)]-~[: 4(0)7+t~(o):] I n > 

where only the terms 

Hf’ + HP’ = / dz-d2zi : 
1 
$4 PJ + !& i& !G 1 l.+=o: (3.23) 

from the interaction Hamiltonian HI = H - HO contribute. An expansion up to 

terms bilinear in the background fields gives 
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[q--(X+&&)]-’ + (3.24) 

1 1 

=F- q- - Ho - (h - A,) ’ H’1) q- - Ho - (h - A,) 
Hj’) + Hf) . 

I 

1 
q--Ho-+--&) 

The already familiar procedure generates six expressions illustrated by diagrams in 

Fig. 3. Such small number of diagrams is a remarkable feature because in formu- 

lations other than the light front form (if it would be possible) one would expect 

3.4! = 72 time ordered diagrams. 

:*p*y:20” 13: 
A 8 

a--[ q-+k; +k;-(p-+k;,+k;+h; )I-’ 

@-[q-+h;+k;-(p-+(k+k&tk;)]-’ 

@-e[q-+k; +k;-(p-+(k+k,+k2);)]-’ 

Figwe 3: Au &gruau cor4nt.ibuting to the .l”ml cond-ate .oeKicient in Ihe 
lowest order of putwb*tion theoq. The n0t.ti.m -pks are given 
Thc-d*hedLpuns~qu~*(X+Y)vbmX=A+B=C+D 
uldY=E=F. 

According to the equalities observed in Fig. 3. the complete answer is (we neglect 
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I-I++ 
1 J q+ d3p 1 

<f,> = -- 16+ o p+k+ q- - p- - k- / d’kld’ka < fl I g*a;,(k+;,(kl) I f-I > . 

W* + m)7*2(g-- p+ #, + m)7” (#+ p,+ p, + m)7+ p7+ . 
[(q - k + kz)’ - m*] [(q - k + kl + k2)2 - ml] 

+ (3.25) 

Wll+m)r”(E(+ j!1+m)7+(p+ p1-m)7*l(p-m)7+ - 
[(q - k + kd2 - ml] [(q - (p + k& + kl + k2)z _ m~l 

where 

pLz -t m2 kL2 + mz 
p- = 

Pi 
,k+=q+-p+,kl=ql-p’,k-= k+ . (3.26) 

The vacuum expectation value of the background gluon fields is 

< n 1 g2a;2(kz)a;l(kl) ( n > = -A < n I g*f,J;“” 1 ri > . 

*Ai% * [&64CkJ] [&b’(kz)] 

(3.27) 

It follows from equation (2.23) and the vacuum property that 

< n / grf;@f;sb I n >= &6”b(g”qges - gusg8’). < t-2 / g2f&yf;rY / R > (3.28) 

The tensor A may be written as follows 

AP1P’ = 
PZPI (3.29) 

-(gE + WlP, - 

where the light front vectors n and 6 are described in the Appendix. 

The most ergonomic way to evaluate (3.27) is to use the fact that only 13 from 

256 elements of the tensor A are different from zero. One sums up the correspond- 

ing contributions to (3.25), calculating them separately. Some algebra and generic 

substitutions described in Section II1.A. allow the elementary derivation of the an- 

swer 

l-I++ <If> = q+q+ . < n I iwdz*~ I n > . c 
48~9 q’ 

(3.30) 
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where 
c=3(a+l)(a-l)a~ lnJii+1 -3a’+2a-3 

4a2 2fi G-1 4aZ 
(3.31) 

and a = 1 - $$, in agreement with equation (4.5) of Referencelz,“l. 

IV. Conclusion 

The light front Hamiltonian formulation of QCD contains singularities which 

can be removed at a price of introducing vacuum expectation values of different 

fields. The most important vacuum expectation values are quark and gluon con- 

densates. The canonical light front calculation of their coefficients in the vacuum 

polarization induced by the quark vector current reproduces formulas used in the 

QCD sum rules121. The sum rules show that the quark and gluon condensates are 

universal numbers which explain many features of the hadronic spectrum. The light 

front Hamiltonian, which contains terms introducing condensates, may then have a 

chance to describe the structure of hadrons to a good approximation. The following 

additional reasons support this hope. 

The light front scheme offers a relativistic formulation of the few body problem 

free from typical difficultie&l such as boosting the bound states. The most trans- 

parent description of the short distance structure of hadrons is achieved just using 

light front dynamicsl’l. The new terms in the Hamiltonian containing background 

fields act at distances on the order of the hadronic size. The gluon condensate pro- 

vides forces looking like the harmonic oscilator force confining color. A choice of the 

origin of the harmonic potential does not violate translation invariance because it is 

equivalent to a choice of gauge. The harmonic constant of the potential is propor- 

tional to the gluon condensate. There is a chance to explain in QCD the existence 

of the bag pressure by the value of the gluon condensate. There is no problem with 

relativistic motion of bags. The quark condensate is a signal of chiral symmetry 

breaking. Both quarks and gluons are expected to obtain effective masses. The 

notion of the mass of a confined object like a quark or a gluon can be introduced 

by means of the effective parameter which plays the role of a mass in the eigenvalue 

equation of the Hamiltonian. 
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The light front Hamiltonian suggests the following picture of the nucleon 

1 N > = vg’&J:Ql I n > +tlspp Qlw?3s I Imtttt n>+ 
(4.11 

+fL&qIq~q$$qt 1 n > +(less important terms) 

The light front Fock wave functions describe pointlike quarks and gluons by effective 

parameters resulting from the interaction of these particles with the vacuum 1 n > . 

The truncation of ‘less important terms’ may be a good approximation if at small 

virtualities the effective constituent masses are large enough and the interactions 

are such that the additional components would have to raise the eigenvalue of the 

Hamiltonian. The first wave function $g’ would provide a direct connection be- 

tween notions of constituent and current quarks. A phenomenological model based 

on this idea gives good agreement with static and deep inelastic nucleon dataIS]. 

The wave function $A:: would explain the origin of counting rules in exclusive prc- 

cesses or the half of the nucleon momentum carried by gluons in the deep inelastic 

structure function Fr. The third wave function would explain the asymptotic be- 

haviour of the first onelsl and the presence of a meson cloud around the nucleon 

core.Perturbative effects would be superposed on this leading approximation. The 

eigenvalue problem for the new Hamiltonian deserves investigation. 

Further tests of the Hamiltonian have to be carried out. A careful treatment of 

the parameter 6 splitting fields is not completed yet. Consequently, the mixing of 

gluons and massless quarks still awaits explanation. The delicate point of renor- 

malization in the presence of 6 is not clear. Physical results must be independent 

of the actual value of the parameter 6. This may lead to a set of &invariance condi- 

tions. The flow of probability through the 6-splitting might lead to the low energy 

theoremsl’l.Although it is difficult to draw firm conclusions at this stage, we hope 

that the approach we have outlined will’lead the way to a description of hadronic 

structure. 
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uo8 = ;(d=f.‘= + dpfE=)q, 

tER.MIUB-P&--/123-T 

x=~~s = 6". &6 + ,j8. u+ + ;iv. ,,a86 + jj6. u=@7+ 
_ [,j=+jB . ,,lr’yJ + jjy . ,,rSJ + i=9. u~8~+ 
+ iw . ,‘PQJ + ,739 . u~-~ + GT@. u'-@]9r+ 

+ [i"iW .,y6 + ,j=$,j6.uw7+ 
+ ~=,j7@. ,p4 + ,j&j7+6. uy9,,9v 

u=fl-f = $(d=d@j[’ + sld=f,‘p + dhPf:=+ 

+ dadaft + d-‘d@f:= + d=d7f:@)tj, 

(A.16) 

Each succeeding-order correction does not modify the previous result. The field tensor 
f py and the quark field look like 

f”” = f,‘” + z, . dafl” + ~z=zp[dadpf~Y - 2i[Xaa, f,‘“]] + O(z3) 

w = w,, + 2,. d=w, + iz=z,g. (d=dpw, - 2iXpp. w,)+ 

(A.17) 

+ ~z=zp,. (dadpd7w, - 6iXpB. dTw, - 6iXaB7 . w,)+ 

+ &z=z@z+6 . (d”dpd7d6w, - 12iX”@. d7$w, - 24iXmB7. d’w,+ 

- 24iX"B76 .w,-12x "B.x-16.~~) 
+ O(2). 

Similar expansions exist in axial gauges n,A* = 0 when n2 = ztl. It remains to 
substitute rj = n and n = n, roughly speaking. The choice of the origin of the expansion is 
equivalent to a choice of gauge because it is so in the Fock-Schwinger gauge and we obtain 
the a+ = 0 expansion by a gauge transform from the Fock - Schwinger gauge. The gauge 
condition a+ = 0 is invariant under three independent Lorentz boosts under which the 
whole light front scheme is invariant. 

The expansion (A.16) is not, in fact, complicated if we can restrict it to the lowest 
terms. 

3 
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Appendix 

Let us denote fields as follows 

At=A+a 

rLt=t(,+w 
iD@ = ia@ - gA’ 

id’ = iafi - gap 
FpY = ig[D’, D”] 

f’” = ig[d’,d”] 

(A.11 

and introduce A and +, the background fields in the Fock-Schwinger gauge z,A' = 0, 

iD” = W - gA@, 

F’” = ig[D’,D”]. 64.2) 

The fields A and $ can be expanded around z = 0 as follows 121 

A’= ’ -z,.F$‘+- 
2 -O! 3 ~ll~~~p~ D=F:“ + y 4 12,z=z~zp. D=DBF:” + . . . 

4 = $0 + za . D=& + ;z=q. D=D~+= + . . . (A.3) 

Suppose the background fields a and w are related to the background fields A and 3 by 
the gauge transformation h 

A”=h.a’.h-l+$‘h.h-l 

$t=h.w ’ 

Then the covariant derivatives are connected by 

iD=’ . . . ,D=mF@,” = h . id=” . . . id=- f’” . h-’ 

(-4.4) 

(-4.5) 
iDa’ . . . SD”-$ = h . id”’ . . . id”“w 

Therefore, if we impose the condition 

h(0) = 1, 

then the expansions (A.3) can be rewritten as 

(-4.6) 

A’ = -!- 
2.0!=* 

. f,p’ + &yp . d” ff’ -t ~z=z~z, - duds f,” + . . . 

(4.7) 

* = w. + 2% . d”w, + ;z=q . dPdow, + . . . , 

I 
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i.e. gauge covariant expressions containing gauge covariant coefficients in the a+ = 0 
gauge. The expansion we are looking for can be found from the inverse relation to (A.4) 

,,‘=h-‘.A’.h-I),-‘.@‘h 
9 

w = h-‘9 
(-4.8) 

where Ap and jr are given by (A.7) and the gauge transformation h is a solution to the 
condition a+ = 0 

,3+h++.h (A.91 

with the constraint condition (A.6). 
We can represent 

h = P (A.lO) 

and find order by order in powers of ~9‘ 

X=X,+Xrz’+X,,z”z”+... 

To construct the solution we need two vectors q and rj equal to 

(A.ll) 

17 = (f)- = 2,9+ = o,fjJ = 0) 

(A.12) 
jj=(i-=o,~+=l,jjl=o) . 

The only difficulty is to find solutions of the equations like 

X+al...a. = u=‘...=” (A.13) 

where u”l-p- is a symmetric tensor and XOep*-“- is a symmetric tensor. This is done by 
writing 

pa,...a. = i’. u’)l...P”, (A.14) 

symmetrizing in indices p and oi, i = 1,. . , n, subtracting unwanted walls, cubes, . and 
adding lost edges of the desired tensor X”~“l-“-. 

We have calculated the resulting expansion up to third order in 2“. It reads 

(A.15) 

where 

x4 = 6”. Up + fip. u=, UQ = $. f,“” 

X”B7 = 6”. u87 + fjB . u-7 + $j-f . uep+ 

- [fj”jjS . #-I + jj=jj-f . ,rB + @+j’. U’Q]‘lr 

2 


